Prove function composition is associative $f \circ h \circ g = (f \circ h) \circ g$
\[
\begin{align*}
\mbox{let } g:a \rightarrow b, \quad f:b \rightarrow c, \quad h:c \rightarrow d \\
h \circ f \circ g &= h(f(g(a))):a \rightarrow d \\
(h \circ f )\circ g &= (h(f(b)):b \rightarrow d) \circ (g:a \rightarrow b) \\
&= h(f(g(a))):a \rightarrow d \\
\mbox{Thereforce, } h \circ f \circ g &= (h \circ f \circ) \circ g
\end{align*}
\]