\[ \mbox{Similar Matrix} \]
For invertable matrix $\mathbf{A}$, if there exist matrix $\mathbf{P}$ such that
\[ \mathbf{A} = \mathbf{P} \mathbf{B} \mathbf{P}^{-1} \]
then $\mathbf{A}$ is similar to $\mathbf{B}$
\[ \mbox{Proposition} \]
Let $\mathbf{A}$ be an $n \times n$ matrix, $\mathbf{P}$ is non-singular matrix $n \times n$ matrix, and
$\mathbf{B} = \mathbf{P} \mathbf{A} \mathbf{P}^{-1}$. Then the matrices have the same characteristic polynomials.