% Katex does not support equation \begin{equation} \sin{x}^2 + \cos{x}^2 = 1 \\ e^{pi i} + 1 = 0 \end{equation} % For Katex \[ \begin{align} \sin{x}^2 + \cos{x}^2 &= 1 \\ e^{\pi i} + 1 &= 0 \end{align} \]
\[ \vec{v} \\ \vec{AB} \\ \bar{v} \\ \bar{p_0} \\ \overline{p_0} \\ \overline{v} \\ \overline{AB} \\ \overrightarrow{AB} \]
\cos{\alpha} = \frac{\vec{BA} \vec{BC}}{|\vec{BA}| | \vec{BC} |} \\ \cos{\alpha} = \frac{\vec{BA} \, \vec{BC}}{|\vec{BA}| | \vec{BC} |} \\ \cos{\alpha} = \frac{\vec{BA} \quad \vec{BC}}{|\vec{BA}| | \vec{BC} |} \\ \cos{\alpha} = \frac{\vec{BA} \qquad \vec{BC}}{|\vec{BA}| | \vec{BC} |}
I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
\begin{equation} \begin{aligned} A &= \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} \\ \det{A}&=a_1 (-1)^{1 + 1} \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} + b_1 (-1)^{2 + 1} \begin{vmatrix} a_2 & a_3 \\ c_2 & c_3 \end{vmatrix} + c_1 (-1)^{3 + 1} \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \\ \end{vmatrix} \end{aligned} \end{equation}
I_3 = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}
R_2 = \begin{bmatrix} \cos(\beta) & -\sin(\beta)\\ \sin(\beta) & \cos(\beta) \end{bmatrix} \\
M_{y}(\alpha) =\begin{bmatrix} \cos\alpha & \sin\alpha & 0\\ 0 & 1 & 0 \\ -\sin\alpha & \cos\alpha & 0 \end{bmatrix} \\
M_{x}(\alpha) =\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\alpha & \sin\alpha\\ 0 & -\sin\alpha& \cos\alpha \end{bmatrix} \\
M_{z}(\alpha) =\begin{bmatrix} \cos\alpha & \sin\alpha & 0\\ -\sin\alpha & \cos\alpha & 0\\ 0 & 0 & 1 \end{bmatrix} \\
S = \begin{bmatrix} 1 & 0 & 0 & x\\ 0 & 1 & 0 & y\\ 0 & 0 & 1 & z\\ 0 & 0 & 0 & 1 \end{bmatrix} \\
T =\begin{bmatrix} x & 0 & 0\\ 0 & y & 0\\ 0 & 0 & z \end{bmatrix} \\
A_{m,n} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix} \\
A =\left( \begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right)\\
A =\left \{ \begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right \} \\
A =\left[ \begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right] \\
A = \left| \begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right| \\
\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}
\begin{Vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{Vmatrix}
\begin{matrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{matrix}
M_{1}= \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1\\ \end{bmatrix} M_{i}= \begin{bmatrix} 0 & -1 & 0 & 0\\ 1 & 0 & 0 & 0\\ 0 & 0 & 0 &-1\\ 0 & 0 & 1 & 0\\ \end{bmatrix} \\ M_{j}= \begin{bmatrix} 0 & 0 &-1 & 0\\ 0 & 0 & 0 & 1\\ 1 & 0 & 0 & 0\\ 0 &-1 & 0 & 0\\ \end{bmatrix} M_{k}= \begin{bmatrix} 0 & 0 & 0 &-1\\ 0 & 0 &-1 & 0\\ 0 & 1 & 0 & 0\\ 1 & 0 & 0 & 0\\ \end{bmatrix} \\ M_{-1}= \begin{bmatrix} -1 & 0 & 0 & 0\\ 0 & -1 & 0 & 0\\ 0 & 0 & -1 & 0\\ 0 & 0 & 0 & -1\\ \end{bmatrix}
\chi(\lambda) = \left| \begin{array}{ccc} \lambda - a & -b & -c \\ -d & \lambda - e & -f \\ -g & -h & \lambda - i \end{array} \right| \\
\left< \left[ \begin{array}{cc} 1 \\ 3 \end{array} \right]^{\ast} \,, \left[ \begin{array}{cc} 2 \\ 3 \end{array} \right]^{\ast} \right>
v =\left[ \begin{array}{cc} c_1 \\ c_2 \\ c_n \end{array} \right]
v =\left[ \begin{array}{cc} c_1 \\ c_2 \\ \vdots \\ c_n \end{array} \right] \\
\left[ \begin{array}{c} x_1 \\ x_2 \end{array} \right] = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \times \left[ \begin{array}{c} y_1 \\ y_2 \end{array} \right] \\
\begin{bmatrix} xz & xw \\ yz & yw \end{bmatrix} = \left[ \begin{array}{c} x \\ y \end{array} \right] \times \left[ \begin{array}{cc} z & w \end{array} \right]\\
A =\begin{Bmatrix} x & y \\ z & v \end{Bmatrix} \\
A = \begin{pmatrix} x & y \\ z & v \end{pmatrix} \\
v = \left[w_1, w_2, w_3 \right] \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ \end{bmatrix} \left[ \begin{array}{cc} c_1 \\ c_2 \\ c_3 \end{array} \right] \\
v = \left[w_1, w_2, w_3 \right] \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ \end{bmatrix} \\
v = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ \end{bmatrix} \left[ \begin{array}{cc} c_1 \\ c_2 \\ c_3 \end{array} \right] \\
v = \left[w_1, w_2, \cdots, w_n \right] \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \left[ \begin{array}{cc} c_1 \\ c_2 \\ \vdots \\ c_n \end{array} \right] \\
\[ \begin{array}{c} \textbf{C}'(t) &=& 3\left[ \textbf{B}_{2,{\color{red}-1}}(t) - \textbf{B}_{2,0}(t) \right]\textbf{P}_0 + \nonumber \\ && \> 3\left[ \textbf{B}_{2,0}(t) - \textbf{B}_{2,1}(t) \right]\textbf{P}_1 + \nonumber \\ && \> 3\left[ \textbf{B}_{2,1}(t) - \textbf{B}_{2,2}(t) \right] \textbf{P}_2+ \nonumber \\ && \> 3\left[ \textbf{B}_{2,2}(t) - \textbf{B}_{2,{\color{red}3}}(t) \right] \textbf{P}_3 \nonumber \\ &=& 3 \textbf{B}_{2,0}(t)(\textbf{P}_1 - \textbf{P}_0) + \nonumber \\ && \> 3 \textbf{B}_{2,1}(t)(\textbf{P}_2 - \textbf{P}_1) + \nonumber \\ && \> 3 \textbf{B}_{2,2}(t)(\textbf{P}_3 - \textbf{P}_2) \nonumber \\ \end{array} \]
\mathcal{O}(2^n) \\ \mathcal{O}(n\log{}n)
\begin{equation} \begin{aligned} M_{z}(\beta) & =\begin{bmatrix} \cos\beta & -\sin\beta & 0\\ \sin\beta & \cos\beta & 0\\ 0 & 0 & 1 \end{bmatrix} \\ M_{y}(\beta) & =\begin{bmatrix} \cos \beta & \sin\beta & 0\\ 0 & 1 & 0 \\ -sin\beta & \cos\beta & 0 \end{bmatrix} \\ M_{x}(\beta) & =\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\beta & -\sin\beta\\ 0 & \sin\beta& \cos\beta \end{bmatrix} \end{aligned} \end{equation}
\begin{equation} \begin{aligned} x & = y + 1 \\ y & = z + 1 \\ z & = x + 1 \end{aligned} \end{equation}
\lim_{h \rightarrow 0} \frac{f(x + h)}{h}
\langle \vec{u} \,, \vec{v} \rangle \\ \langle \cdot \,, \cdot \rangle \\ \langle \,, \rangle \\ \left\langle u\mathbf{M}^{\ast} \,, v\right\rangle = \left\langle u \,, \mathbf{M}^{\ast} v\right\rangle
\frac{du}{dt} \\ \frac{d^2u}{dx^{2}} \\ \frac{\partial u}{\partial t} = h^2 \left( \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right)
\|\vec{v} \| \\ \lVert \vec{v} \rVert
\begin{equation} \begin{aligned} \sin x & = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!} \\ \sin x & = \frac{x^1}{1!} - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots \\ \cos x & = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{2k!} \\ \cos x & = \frac{x^0}{0!} - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots \end{aligned} \end{equation}
\[ \begin{align} M_{z}(\theta) & =\begin{bmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix} \\ & \Rightarrow \left. {\frac{d M_z}{d\theta}} \right|_{\theta=0} = \begin{bmatrix} 0 & -1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix} \end{align} \]
\mathfrak{so}(3) \tau \mathcal{T} \mathcal{M} \mathcal{U} \mathcal{X}
\\~\\ \medskip \bigskip
\mid \\ \nmid \\ \vert \\ \lvert \\ \big|_{\theta = 0}^{\theta = 2\pi} \\ \bigg|_{\theta = 0}^{\theta = 2\pi} \\ \left\langle \right\rangle \\ \left< \right> \\ \left( \right) \\
\begin{scope}[xshift=4cm] \node[main node] (1) {$1$}; \node[main node] (2) [right = 2cm of 1] {$2$}; \node[main node] (3) [below = 2cm of 1] {$3$}; \node[main node] (4) [right = 2cm of 3] {$4$}; \path[draw,thick] (1) edge[->] node {} (2) (2) edge[->] node {} (4) (4) edge[->] node {} (3) (3) edge[->] node {} (1) (4) edge[->] node {} (1); \end{scope}
\[ \begin{align*} \begin{split} g(x) &= x^2 + bx + c \\ f(x) &= x^4 + 3x^3 + 2x^2 + 3x + 10 \\ &\quad + x^4 + 3x^3 + 2x^2 + 3x + 10 \end{split} \end{align*} \]
\[ \begin{equation} \begin{aligned} F ={} & \{F_{x} \in F_{c} : (|S| > |C|) \\ & \cap (\mathrm{minPixels} < |S| < \mathrm{maxPixels}) \\ & \cap (|S_{\mathrm{conected}}| > |S| - \epsilon)\} \end{aligned} \end{equation} \]
% generate png file: pdflatex -shell-escape file.tex $\documentclass[border=4pt,convert={density=600,size=300x300,outext=.png}]{standalone}$ $\usepackage{tikz}$ $\usetikzlibrary{automata,positioning}$ $\begin{document}$ $\begin{tikzpicture}[shorten >=1pt,node distance=2cm,on grid,auto]$ $\node[state,initial] (q_0) {$q_0$};$ $\node[state] (q_1) [above right=of q_0] {$q_1$};$ $\node[state] (q_2) [below right=of q_0] {$q_2$};$ $\node[state,accepting](q_3) [below right=of q_1] {$q_3$};$ $\path[->]$ $(q_0) edge node {0} (q_1)$ $edge node [swap] {1} (q_2)$ $(q_1) edge node {1} (q_3)$ $edge [loop above] node {0} ()$ $(q_2) edge node [swap] {0} (q_3)$ $edge [loop below] node {1} ();$ $\end{tikzpicture}$ $\end{document}$
\documentclass[border=4pt,convert={density=800,size=500x300,outext=.png}]{standalone} \usepackage{tikz} \usetikzlibrary{automata,positioning} \begin{document} \begin{tikzpicture}[shorten >=1pt,node distance=4cm,on grid,auto] \tikzstyle{every state}=[fill=red,draw=none,text=white] \node[state,initial] (q_0) {$q_0$}; \node[state] (q_1) [above right=of q_0] {$q_1$}; \node[state] (q_2) [below right=of q_1] {$q_2$}; \node[state, accepting] (q_3) [below right=of q_0] {$q_3$}; \path[->] (q_0) edge node {[} (q_1) (q_1) edge [bend right] node [below] {0-9} (q_2) edge [loop above] node {[} () (q_2) edge node {]} (q_3) edge [loop below] node {0-9} () (q_2) edge [bend right] node [above] {[} (q_1) (q_1) edge [bend right] node {]} (q_3) (q_3) edge [loop below] node {]} () (q_3) edge node {[} (q_1); \end{tikzpicture} \end{document}
\documentclass[border=4pt,convert={density=800,size=600x600,outext=.png}]{standalone} \usepackage{tikz} \begin{document} % first method \begin{tikzpicture}[shorten >=1pt, auto, node distance=3cm, ultra thick, node_style/.style={circle,draw=blue,fill=blue!20!,font=\sffamily\Large\bfseries}, edge_style/.style={draw=black, ultra thick}] \node[node_style] (v1) at (-2,2) {2}; \node[node_style] (v2) at (2,2) {3}; \node[node_style] (v3) at (4,0) {6}; \node[node_style] (v4) at (2,-2) {4}; \node[node_style] (v5) at (-2,-2) {5}; \node[node_style] (v6) at (-4,0) {1}; \draw[edge_style] (v1) edge node{1} (v2); \draw[edge_style] (v2) edge node{2} (v3); \draw[edge_style] (v3) edge node{3} (v4); \draw[edge_style] (v4) edge node{4} (v5); \draw[edge_style] (v5) edge node{5} (v6); \draw[edge_style] (v6) edge node{6} (v1); \draw[edge_style] (v5) edge node{7} (v1); \draw[edge_style] (v5) edge node{8} (v2); \draw[edge_style] (v4) edge node{9} (v2); \end{tikzpicture} \end{document}
\[ \begin{align*} &\mathbb{R} \quad \text{ is Real Number } \\ &\mathbb{C} \quad \text{ is Complex Number} \\ &\mathbb{O} \quad \text{ is Octonion } \\ &\mathbb{H} \quad \text{ is Quaternion } \\ &\mathbb{N} \quad \text{ is Integer } \\ &\mathbb{Q} \quad \text{ is Rational Number } \\ &\mathbb{Z} \quad \text{ is Complex Number} \\ &\mathbb{I} \quad \text{ is Irrational Number} \\ &\mathbb{P} \quad \text{ is Prime Number } \\ &\mathbb{W} \quad \text{ is Whole, I never see the def.} \\ &\mathbb{A} \quad \text{ is Algebra Number } \\ & z = a + bi \quad \text{ complex number} \\ &\Re \quad \text{ is Real Part} \\ &\Im \quad \text{ is Imaginary Part} \\ & \Re(z) = a \quad \text{ or } \operatorname{Re}(z) \\ & \Im(z) = b \quad \text{ or } \operatorname{Im}(z) \\ \end{align*} \]
\[ \left.\begin{aligned} B’&=-\partial\times E,\\ E’&=\partial\times B - 4\pi j, \end{aligned} \right\} \qquad \text{Maxwell’s equations} \end{equation*} \begin{equation*} \left\{\begin{aligned} B’&=-\partial\times E,\\ E’&=\partial\times B - 4\pi j, \end{aligned} \right\} \qquad \text{Maxwell’s equations} \end{equation*} \]
f(x)= \begin{cases} \frac{x^2-x}{x},& \text{if } x\geq 1\\ 0, & \text{otherwise} \end{cases}
\[ \int_{0}^{2\pi} \sin{\theta} d \theta \bigg|_{\theta = 0}^{\theta = 2\pi} \]